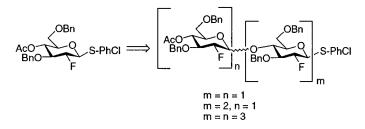
Synthesis of (1→4)-Linked 2-Deoxy-2-fluoroglucose Oligomers. 1


Shin Sugiyama, Wasim Haque,[†] and James Diakur*

Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8

jdiakur@pharmacy.ualberta.ca

Received August 31, 2000

ABSTRACT

Thioglycosides of natural monosaccharides are readily converted into their corresponding chlorides by diphenylchlorosulfonium chloride. This reagent can likewise effect the conversion of the more stable 4-chlorophenylthio 2-deoxy-2-fluoroglucose derivatives into chloride glycosyl donors. On the basis of this activation strategy, it was possible to assemble unnatural oligosaccharides composed of 2-fluorodeoxy sugars.

Starch primarily consists of two glucan fractions, namely, linear amylose which is composed of α -(1 \rightarrow 4)-linked glucose moieties and amylopectin which additionally contains α -(1 \rightarrow 6)-linked glucose branches.¹ The amylose fraction crystallizes in polymorphic forms known as the A and B forms, both of which are right-handed double helices.² A third form, V-amylose, is found in the non-A and non-B segments of amylose and is folded into a left-handed single-helical motif. The helix of V-amylose contains six glucose units per turn with a pitch height of approximately 8 Å.³

The properties of V-amylose closely resemble those of the cyclodextrins and, in particular, α -cyclodextrin which may be viewed as a mimetic of a single V-amylose turn.⁴ Glucose residues in both of these structures are in the syn orientation, and the helical structure is stabilized by inter-

glucose hydrogen bonds between $O(3)_n - O(2)_{n+1}$. Additional stability to the V-amylose helix is provided by $O(6)_n - O(2)_{n+6}$ hydrogen bond formation between the turns.⁵ This helical arrangement provides a relatively hydrophobic interior cavity which is suited for the inclusion of substances and may be exploited for the purpose of drug delivery.⁶ As the fluorine nucleus displays a wide chemical shift range in its NMR spectra, it seemed reasonable to us that installation of this reporter into the glucose residues⁷ of α -(1→4)-linked oligmers may prove useful in studying maltooligosaccharide complexes. We report herein the preparation of (1→4)-linked 2-fluorodeoxyglucose (2-FDG) blocked donors/acceptors, which are suitable for the preparation of larger 2-FDG-based oligomers.

Surprisingly, there are few reports regarding the use of 2-fluorodeoxyhexosyl donors in oligosaccharide synthesis,⁸ and to date, we are not aware of any reports on the assembly of simple 2,2'-difluoro-disaccharides nor of 2-deoxy-2-

 $^{^{\}dagger}$ Medicure Inc., 24-64 Scurfield Blvd., Winnipeg, MB, Canada R3Y 1M5.

⁽¹⁾ Collins, P. M.; Ferrier, R. J. *Monosaccharides, Their Chemistry and Their Roles in Natural Products*; John Wiley & Sons: Chichester, 1995; Chapter 8.

⁽²⁾ Imberty, A.; Chanzy, H.; Perez, S.; Buleon, A.; Tran, V. J. Mol. Biol. **1988**, 201, 365–378.

⁽³⁾ Murphy, V. G.; Zaslow, B.; French, A. D. *Biopolymers* 1975, 14, 1487–1501.

⁽⁴⁾ Hinrichs, W.; Buttner, G.; Steifa, M.; Betzel, C.; Zabel, V.; Pfannemuller, B.; Saenger, W. *Science* **1987**, *238*, 205–208.

^{10.1021/}ol006529i CCC: \$19.00 © 2000 American Chemical Society Published on Web 10/05/2000

⁽⁵⁾ Gessler, K.; Uson, I.; Takaha, T.; Krauss, N.; Smith, S. M.; Okada, S.; Sheldrick, G. M.; Saenger, W. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 4246–4251.

⁽⁶⁾ Molteni, L. In *Drug Carriers in Biology and Medicine*; Gregoriadis, G., Ed.; Academic Press: London, 1979; pp 107–125.

⁽⁷⁾ For a comprehensive review on fluorosugars, see: Tsuchiya, T. Adv. Carbohydr. Chem. Biochem. **1990**, 48, 91–277.

		0	R₅			
			n ₅			
		R ₄ O	R_1			
		H ₃ O	F			
			۲Ŕ2			
	R ₁	R ₂	R_3	R_4	R ₅	_
1	OAc	Н	Ac	Ac	Ac	
2	Н	Br	Ac	Ac	Ac	
3a	Н	S-PhCl	Ac	Ac	Ac	
3b	S-PhCl	Н	Ac	Ac	Ac	
4 a	Н	S-PhCl	Н	Н	Н	
4b	S-PhCl	Н	Н	Н	Н	
5a	Н	S-PhCl	Н	PhCH		
5b	S-PhCl	Н	Н	PhCH		
6a	Н	S-PhCl	Bn	PhCH		
6b	S-PhCl	Н	Bn	PhCH		
7a	Н	S-PhCl	Bn	Н	Bn	
7ь	S-PhCl	Н	Bn	Н	Bn	
8a	Н	S-PhCl	Bn	Ac	Bn	
8b	S-PhCl	Н	Bn	Ac	Bn	
9a	Н	Cl	Bn	Ac	Bn	
9b	Cl	Н	Bn	Ac	Bn	
Figure 1.						

fluorohexose oligomers. Compound 1 (Figure 1) was the starting point for the present synthetic work, and this material was readily accessible from 1,3,4,6-tetra-O-acetyl- β -D-mannopyranose⁹ following published procedures.¹⁰ Thioglycosylation of 1 with 4-chlorothiophenol in the presence of boron trifluoride diethyl etherate (8 equiv) gave α -thioglycoside **3a** (70%).¹¹ De-O-acetylation of this thioglycoside with sodium methoxide in methanol provided triol 4a, which was reacted with benzaldehyde dimethyl acetal (catalytic amount of *p*-toluenesulfonic acid) to give **5a** (75%). Etherification of the remaining hydroxyl moiety with sodium hydride and benzyl bromide in tetrahydrofuran at 60 °C gave fully protected 6a (72%), which was then subjected to reductive ring opening conditions¹² to provide di-O-benzyl thioglycoside 7a (80%). Acetylation of the free 4-OH group furnished **8a.** Synthesis of the corresponding β -thioglycoside **8b** required the conversion of 1 to bromide 2,¹³ which was then reacted under phase-transfer conditions¹⁴ with 4-chlorothiophenol to give **3b** (91%). The β -thioglycoside **3b** was then subjected to the same sequence of events as 3a to give successively 4b (quantitative), 5b (76%), 6b (95%), and

finally 7b (95%). The latter compound was then acetylated to provide fully protected fluorodeoxyglucose derivative 8b. Both **8a** and **8b** were readily converted to their corresponding chlorides 9a and 9b upon treatment with diphenylchlorosulfonium chloride.¹⁵ Reaction of **8a** under these conditions provided the chloride mixture 9b/9a (11:1), whereas 8b gave 9a as the sole product. Thus, conversion presumably proceeds by inversion at the anomeric center. The result observed with **8b** was totally unexpected as β -thioglycosides of natural sugars typically provide a mixture of α : β chlorides.¹⁶ We next studied the glycosyl donor protential of chlorides 9a and 9b. Reaction of chloride 9a with acceptor 7b failed to proceed under halide ion conditions¹⁷ or in the presence of mercury bromide.¹⁸ Glycosylation of 7b (1 equiv) with 9a (1 equiv) did proceed, however, using silver trifluoromethanesulfonate/2,6-di-tert-butylpyridine¹⁹ in chloroform-toluene 4:1 to provide a mixture of **10** and **12** (10:12 = 40:60) in 65% yield (Figure 2). Reaction of this same acceptor with chloride 9b provided 10 and 12 in a 45:55 ratio.20 Silver promotion of the reaction between 7b and 9a in either acetonitrile or tetrahydrofuran as solvent was remarkably sluggish, and even donor 2 has been noted to be reasonably stable to typical glycosylation conditions.^{8e} Glycosidation was therefore effected under forced conditions as follows: The reaction mixture in acetonitrile-toluene 3:2 was concentrated under reduced pressure (<40 °C) and coevaporated with toluene several times. After workup and purification by silica gel column chromatography, **10** and **12** were obtained in 83% combined yield (10:12 = 62:38). Silver-promoted glycosylation of the 4-OH of a glucose acceptor with a 2-deoxy-2fluoromannosyl donor has previously been reported to proceed with preferential α -stereoselectivity.^{8b} The poor stereoselectivity observed with the 2-deoxy-2-fluoroglucosyl donors reported herein is potentially related to the nature and reactivity of the fluoroglycosyl oxocarbonium intermediate. The product distribution obtained seems to be consistent with an S_N1-type reaction mechanism; however, further studies are required in order to gain an understanding of the precise mechanistic details.

The latter reaction conditions were selected for the subsequent assembly of $(1\rightarrow 4)$ -linked 2-deoxy-2-fluoroglucose oligomers. Thus, disaccharide **10** was de-*O*-acetylated to give glycosyl acceptor **11**, and reaction of this compound with chloride **9a** under the aforementioned forced conditions provided both the α - and β -trisaccharides **13** and **16** (85% combined yield, **13**:16 = 54:46). Compound **13** was then de-*O*-acetylated to give the trisaccharide glycosyl acceptor **15**, while the trisaccharide glycosyl donor **14** was prepared under the conditions used to generate chloride **9a**. Again, glycosylation of compound **15** with **14** was effected using

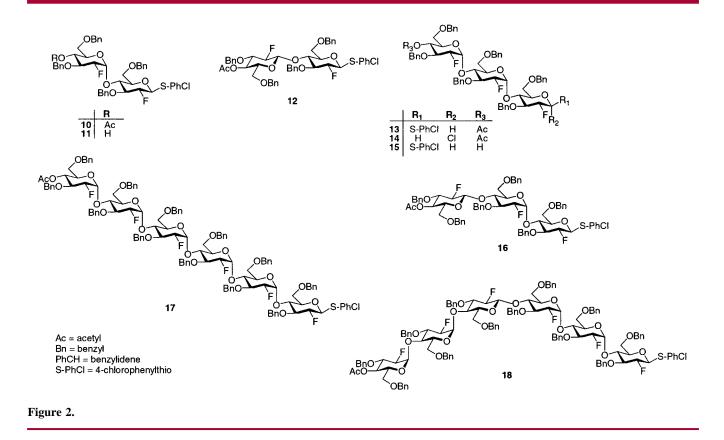
- (17) Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. J. Am. Chem. Soc. 1975, 97, 4056–4062.
- (18) Helferich, B.; Wedemeyer, K. F. Liebigs Ann. Chem. 1949, 563, 139-145.
 - (19) Hanessian, S.; Banoub, J. Carbohydr. Res. 1977, 53, C13-C16.

^{(8) (}a) Vass, G.; Rolland, A.; Cleophax, J.; Mercier, D.; Quiclet, B.; Gero, S. D. J. Antibiot. 1979, 32, 670–672. (b) Ogawa, T.; Takahashi, Y. J. Carbohydr. Chem. 1983, 2, 461–467. (c) Shelling, J. G.; Dolphin, D.; Wirz, P.; Cobbledick, R. E.; Einstein, F. W. B. Carbohydr. Res. 1984, 132, 241–259. (d) McCarter, J. D.; Adam, M. J.; Braun, C.; Namchuk, M.; Tull, D.; Withers, S. G. Carbohydr. Res. 1993, 249, 77–90. (e) McCarter, J. D.; Yeung, W.; Chow, J.; Dolphin, D.; Withers, S. G. J. Am. Chem. Soc. 1997, 119, 5792–5797.

⁽⁹⁾ Pozgay, V.; Glaudemans, P. J.; Robbins, J. B.; Schneerson, R. *Tetrahedron* **1992**, *48*, 10249–10264.

⁽¹⁰⁾ Kovac, P. Carbohydr. Res. 1986, 153, 168-170.

⁽¹¹⁾ Thioglycoside formation is slow, however, long reaction times leads to the formation of 3b (~15% after 10 days).


⁽¹²⁾ Garegg, P. J.; Hultberg, H. *Carbohydr. Res.* **1981**, *93*, C10–C11. (13) Adamson, J.; Foster, A. B.; Westwood, J. H. *Carbohydr. Res.* **1971**, *18*, C10–C11.

^{(14) (}a) Dess, D.; Kleine, H. P.; Weinberg, D. V.; Kaufman, R. J.; Sidhu, R. S. *Synthesis* **1981**, 883–885. (b) Rothermel, J.; Faillard, H. *Biol. Chem. Hoppe-Seyler* **1989**, *370*, 1077–1084.

⁽¹⁵⁾ Sugiyama, S.; Diakur, J. M. Org. Lett. 2000, 2, 2713-2715.

⁽¹⁶⁾ Kovac, P.; Lerner, L. Carbohydr. Res. 1988, 184, 87-112.

⁽²⁰⁾ Reaction of **7a** with **2** under the same conditions proceeds to give the corresponding disaccharides in 74% yield ($\alpha:\beta = 4.5/1$).

the forced conditions to provide α - and β -hexasaccharides **17** and **18**, respectively (54% combined yield, **17**:18 = 3:2).

In summary, we have extended the application of the conversion of thioglycosides into their corresponding glycosyl chlorides with diphenylchlorosulfonium chloride to include the generation of 2-deoxy-2-fluoroglucose donors. Control over stereoselectivity during glycosylation with 2-deoxy-2-fluoroglycosyl donors **9a** and **9b** proved to be challenging, nevertheless, the assembly of novel $(1\rightarrow 4)$ linked 2-deoxy-2-fluoroglucose oligomers using the resulting glycosyl chlorides has been demonstrated. These reported donors may be employed in the preparation of fluoromaltoand fluorocellulo-oligosaccharides or, potentially, other modified oligosaccharides. The deprotected 2-deoxy-2fluoromaltohexose may prove useful in subsequent ¹⁹F NMR complexation studies, while the blocked hexasaccharide 17 may be useful in the preparation of a fluorinated α -cyclodextin. Future efforts in our laboratory will be directed to both of these ends.

Acknowledgment. This work was funded in part by a TCP grant from the Alberta Heritage Foundation for Medical Research.

Supporting Information Available: Spectral data for compounds 3-18 and the experimental details for the glycosylation reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006529I